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Picosecond Optoelectronic Measurement of
S Parameters and Optical Response
of an AlGaAs/GaAs HBT
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S. MOSS, MEMBER, IEEE, AND D. SMITH

Abstract —The S parameters of an AlGaAs/GaAs heterojunction bipo-
lar transistor (HBT) were measured using a picosecond optoelectronic
system. The measured § parameters show qualitatively good agreement
with those obtained using a conventional vector network analyzer. The
optical response of the HBT was also measured using this system by
directly illuminating the base-collector region. Used as a phototransistor,
the HBT showed pulse widths with FWHM as short as 15 ps.

I. INTRODUCTION

In recent years there has been steady progress in the develop-
ment of high-frequency semiconductor devices and millimeter-
wave integrated circuits. Present high-frequency transistors have
cutoff frequencies well beyond the bandwidth that can be mea-
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sured conveniently using conventional network analyzers. As a
result, the millimeter-wave S parameters of devices are com-
monly calculated from the extrapolation of small-signal models
of the transistor based on the microwave measurements. This
extrapolation method has not been proven to be reliable in
predicting the behavior of devices at frequencies much higher
than the measured frequency. By using external mixers the pre-
sent bandwidth of network analyzers has been extended to about
110 GHz. But several difficulties arise in characterizing devices in
the millimeter-wave region. At high frequencies the transistors
have to be mounted in test fixtures with waveguide-to-microstrip
transitions. It is difficult to design wide-bandwidth and low-loss
waveguide-to-microstrip transitions. The actual S parameters of
the device have to be de-embedded from the test fixture, and with
transitions having a high insertion loss erroneous results can be
obtained.

Use of time-domain techniques for characterization of devices
offers advantages over the frequency-domain techniques used by
most network analyzers. By measuring the response of the device
in the time domain and taking the Fourier transform of the data,
the frequency performance of the device can be calculated. The
response of the device can be “windowed” in the time domain
and separated from reflections due to transitions and other
unwanted signals before it is analyzed. This will simplify de-
embedding of the S parameters of devices. But the use of time-
domain techniques for device characterization has been very
limited due to a lack of availability of fast electrical pulse
generators and oscilloscopes.

In order to improve and optimize the performance of millime-
ter-wave transistors it is important to have a simple technique for
direct characterization of devices at very high frequencies. Pi-
cosecond optoelectronic techniques offer a new method for gen-
erating and sampling ultrafast electrical pulses [1]-[3]. These
electrical pulses can be used to test the response of high-speed
semiconductor devices [4] and integrated circuits [5], [6]. Using
photoconductive switches, picosecond electrical pulses can be
generated and sampled at a very short distance from a device.
Therefore, the high-frequency signals do not have to travel
through long sections of transmission lines and waveguide transi-
tions, making this technique superior to conventional network
analyzers. In this study, S parameters and the optical response of
AlGaAs/GaAs heterojunction bipolar transistors (HBT’s), which
are very promising devices for applications in microwave and
millimeter-wave integrated circuits [7], were characterized using
picosecond optoelectronic techniques.

1I. MEASUREMENT

An AlGaAs/GaAs HBT was mounted in an optoelectronic
test fixture of the type shown in Fig. 1. The HBT tested had
3x10 pm? emitter and self-aligned base ohmic metal. The struc-
ture and fabrication of this device were previously reported in
detail {8]. The microstrip lines were fabricated using gold on
silicon-on-sapphire (SOS) substrates. A thin layer of chromium
was used to improve adhesion between the gold and the silicon
surface. The sapphire substrates were about 125 pm thick and the
microstrip lines were designed to have a 50 Q impedance. The
silicon epi-layer was about 0.5 pm thick and was heavily im-
planted with four different energies of silicon ions to shorten the
carrier lifetime to subpicosecond levels [9].

On each side of the device there are two photoconductive
switches, which consist of 25 pm gaps in the side microstrip lines.
By applying a dc bias to a photoconductive switch and focusing a
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picosecond laser beam on the gap, fast electrical pulses are
generated that propagate on the center transmission line. A
second photoconductive switch is used for sampling the electrical
pulses. The speed of the electrical pulse generated in our case is
limited by the gap capacitance. The center microstrip lines, in
addition to being used for launching the fast electrical pulses, are
used to supply the dc biases to the transistor. This will allow the
characterization of the device at any bias point. The center
microstrip lines are made long enough that the reflections from
the bias lines arrive at the sampling switch outside the *‘time
window” necessary to measure the response of the device.

Fig. 2 shows the schematic of the picosecond optoelectronic
system used to measure the S parameters of the HBT. The pump
source for the dye laser is an actively mode-locked frequency-
doubled Nd:YAG laser putting out 70 ps pulses at a wavelength
of 532 nm and a repetition rate of 7.6 MHz. The dye laser uses
rhodamine 6G (R6G) dye and has a cavity dumper which allows
the repetition rate of the pulses to be varied. The dye laser is
operated at a wavelength of 600 nm with a repetition rate of 3.8
MHz and an average power of 70 mW. The optical pulses have a
pulse width of 1.2 ps measured using an optical autocorrelator.
The train of picosecond laser pulses from the dye laser is split
into two beams. The first beam passes through an optical chop-
per and is focused onto one of the pulse-generating switches on
the optoelectronic test fixture. The second beam travels a path
with a variable length and is focused onto one of the sampling
switches. The length of this path can be varied very precisely by
moving a computer-controlled translation stage. The path length
of the second beam can be varied in such a way that it arnves at
the sampling switch before, during, or after the arrival of the
optical puise at the generation switch. The output from the
samphng switch is fed into the input of the lock-in amplifier.
Depending on which of the four optical switches is used as the
generator and which is used as the sampler, the HBT can be
characterized completely in the time domain. By taking the
Fourier transform of the reflected and transmitted signals and
normalizing it to the Fourier transform of the appropriate input
signal, the S parameters of the device can be determined [4].

III. REesurts

Fig. 3(a) shows the input reflection of the HBT measured by
using switch 1 as the pulse generator and sampling switch 2. The
first peak in the figure corresponds to the electrical autocorrela-
tion of the input pulse to the device. As the delay of the sampling
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pulse was varied the reflection from the bond wires and then the
reflection from the device were obtained. To analyze the data, the
autocorrelation signal was separated from the bond wires and
device reflections. Then the reflection of the bond wires was also
“windowed out.” Since a 1.5 mm section of microstrip transmis-
sion line separates the device from the sampling point, the
reference plane of the measurement has to be moved to account
for the phase change. This can be done very simply in the time
domain by time shifting the reflected signal. Dispersion of electri-
cal pulses over this length of microstrip line was neglected [10].
By taking the ratio of the Fourier transform of the reflected
signal to the autocorrelation signal, the input reflection coeffi-
cient (S;;) of the HBT can be determined.

To measure the input gain of the transistor (S,;), switch 1 was
used as the pulse generator and switch 4 as the sampler. The
resuit shown in Fig. 3(b) shows the electrical pulse that has been
broadened to about 35 ps by passing through the transistor.
Again, this pulse has to be time-shifted to account for the short
length of the microstrips on both sides of the device. S,; of the
HBT can be determined by taking the Fourier transform of this
pulse and normalizing it to the effective input signal from the
optical switches after a calibration procedure. Similarly, the re-
verse transmission and output reflection of the HBT were also
measured and then S;, and S,, were determined from these
measurements.

The optically measured S,; of the HBT is shown in Fig. 4 for
the frequency range of 1-40 GHz. For comparison S parameters
of a similar HBT were measured using on-wafer RF probes and a
conventional vector network analyzer (HP8510). The network
analyzer measured S,; for the range of 1-26 GHz is also shown
in Fig. 4. From the measured S parameters, the maximum
available gain (MAG) of the device was calculated. The plot of
MAG versus frequency (maximum stable gain (MSG) for condi-
tionally stable case) for both the optoelectronic measurements
and the network analyzer measurements is shown in Fig. 5.
Except for some discrepancies, the two measurement techniques
are in good agreement. The discrepancies are believed to be due
to the effect of the bond wires on the optically measured S
parameters and to slight differences between the two HBT’s
tested.

IV. OPTICAL RESPONSE

HBT’s are also important in applications such as high-speed
optical detectors for optical communication [11] and for optical
control of MMIC’s [12]. As a result, it is important to measure
the speed of the HBT as a photodetector. Using picosecond
optoelectronic techniques the speed of photodetectors can be
measured [13]. The same optoelectronic test fixture used in the S
parameter measurements was used to measure the speed of the
HBT as an optical detector. In this case the optical generation
pulse was focused onto the HBT and the output signal was
sampled at switch 4. In these measurements the base of the HBT
was floating and the device was tested as a phototransistor. Since
this device has a self-aligned base metal, the separation between
the base fingers and the emitter edge is only about 0.15 pm [8].
As a result the laser pulse penetrates the device only between the
base and the collector fingers. For a wavelength of 600 nm the
penetration depth in GaAs is about 2000 A [14]. With base and
collector thicknesses of 1500 A and 5000 A4 , respectively, more
than 95% of the light absorption will occur within these two
layers.

The optical response of the HBT for a collector-to-emitter
voltage of 3 V is shown in Fig. 6. The pulse has a FWHM of
about 15 ps, which is very fast considering the device does not
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have a built-in field in the base region. The pulse width of the
optical response of the HBT versus the collector-to-emitter volt-
age is shown in Fig. 7. As can be seen from this figure, the pulse
width decreases from about 55 ps at 0 V to 15 ps at 3 V and
remains constant for higher voltages. Comparing Fig. 6 with Fig.
3(b), it is observed that a much faster response time was obtained
by directly injecting an optical signal into the HBT (bypassing
the base input). This demonistrates that this device is intrinsically

ment using switch 1 as the pulse generator and sampling switch 4

fast and that the electrical performance is limited by the base
resistance. ‘

V. CONCLUSION

S parameters of an HBT were measured up to 40 GHz using a
picosecond optoelectronic technique. The results show qualita-
tively good agreement with measurements of a similar HBT using
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on-wafer RF probes and a conventional vector network analyzer
over the bandwidth of the network analyzer (26 GHz). The
optoelectronically measured S parameters of the device were
limited by the cutoff frequency of the device. The system itself
has a bandwidth greater than 150 GHz. New HBT’s with higher
cutoff frequencies are currently being characterized. The optical

IEEE TRANSACIIONS ON MIC ROWAVE THEORY AND TLCHNIQUES, VOL. 38, NO. 5, MAY 1990

response of the HBT was also measured using this system. HBT’s
appear to be very promising as high-speed optical detectors.
Although in this study the optical switches were fabricated on a
different substrate than the device, it is possible to integrate
optical switches with devices on the same wafer and remove the
effect of the bond wires on the measurements. This will allow
on-wafer measurement of S parameters over a wide bandwidth.
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Control of a GaAs Monolithic Ka-Band Phase Shifter
Using a High-Speed Optical Interconnect
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Abstract —The use of a high-speed optical interconnect in the control of
a Ka-band GaAs monolithic phase shifter is described. A 16 b serial
control signal was used to modulate the output of a laser transmitter, and
the transmitted optical signal was detected and demultiplexed into 16
parallel electrical outputs using a high-speed hybrid GaAs optoelectronic
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